organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jeanese C. Badenock,^a Heidi L. Fraser,^a Gordon W. Gribble^a and Jerry P. Jasinski^b*

^aDepartment of Chemistry, Dartmouth College, Hanover, NH 03755-3564, USA, and ^bDepartment of Chemistry, Keene State College, Keene, NH 03435-2001, USA

Correspondence e-mail: jjasinski@keene.edu

Key indicators

Single-crystal X-ray study T = 296 KMean $\sigma(\text{C}-\text{C}) = 0.013 \text{ Å}$ R factor = 0.051 wR factor = 0.175 Data-to-parameter ratio = 14.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2-Bromo-*N*-tert-butyl-*N*,1-dimethyl-1*H*indole-3-carboxamide

The crystal structure of the title compound, $C_{15}H_{19}BrN_2O$, reveals that the amide group is twisted out of π -conjugation with the pyrrole double bond due to steric hindrance by the Br atom.

Comment

The background to this study is set out in Badenock *et al.* (2007). We now describe the X-crystal structure determination of (I).

The X-ray crystallographic analysis confirms the proposed molecular structure and atom connectivity for (I) (Fig. 1). The indole ring system is planar, with a maximum deviation of 0.025 (9) Å for atom C5. The sum of the bond angles around N1 and N2 are 360.1 and 358.4°, respectively, indicating sp^2 hybridization. However, the O1-C11-N2-C13 torsion angle of -18.9 (11)° reveals imperfect π -conjugation in the amide group due to repulsion between the *tert*-butyl group and the carbonyl oxygen. In addition, the carbonyl oxygen (O1) is severely twisted away from the bromine atom (Br1) with a O1-C11-C3-C2 torsion angle of 134.5 (9)°, indicating little or no π -conjugation between the pyrrole double bond and the carbonyl group. The C2-Br1 bond length is 1.862 (8) Å.

Experimental

To a stirred solution of *N-tert*-butyl-*N*,1-dimethyl-1H-indole-3carboxamide (816 mg, 3.34 mmol, 1 equivalent) in tetrahydrofuran (40 ml) was added slowly 'BuLi (3.0 ml, 5.01 mmol, 1.7 *M* in hexanes, 1.5 equivalents) at 195 K and the solution was stirred at 195 K for 1 h, then warmed to room temperature over 30 min before recooling to 195 K. At this time, the anion was treated with dried 1,2-dibromo-1,1,2,2-tetrachloroethane (1.63 g, 5.01 mmol, 1.5 equivalents) in tetrahydrofuran (20 ml). The solution was warmed to room temperature overnight, then poured on to ice–water (100 ml) and stirred for 2 h. No precipitate formed upon stirring. The aqueous layer was extracted with CH_2Cl_2 (4 × 50 ml). The organic layers were combined, washed with brine (1 × 100 ml), dried (Na₂SO₄), and concentrated *in vacuo* to give a brown oil. Purification using flash column chromatography (2:1 hexanes–ethyl acetate) gave compound

© 2007 International Union of Crystallography All rights reserved Received 27 March 2007

Accepted 11 April 2007

(I) as a yellow solid (887 mg, 86%). An analytical sample of (I) was obtained by several recrystallizations from diethyl ether. Single crystals suitable for X-diffraction study were grown in diethyl ether (m.p. 378-379 K).

Crystal data

 $\begin{array}{l} C_{15}H_{19}BrN_2O\\ M_r = 323.23\\ Monoclinic, P2_1/n\\ a = 7.373 \ (7) \ \AA\\ b = 21.453 \ (7) \ \AA\\ c = 9.132 \ (9) \ \AA\\ \beta = 96.06 \ (9)^\circ \end{array}$

Data collection

Rigaku AFC-6S diffractometer Absorption correction: ψ scan (North *et al.*, 1968) $T_{min} = 0.329, T_{max} = 0.481$ (expected range = 0.291–0.425) 2526 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.175$ S = 1.022526 reflections $V = 1436 (2) \text{ Å}^{3}$ Z = 4 Mo K\alpha radiation \mu = 2.86 mm⁻¹ T = 296 (2) K 0.50 \times 0.40 \times 0.30 mm

2526 independent reflections 992 reflections with $I > 2\sigma(I)$ 3 standard reflections every 150 reflections intensity decay: 1.4%

173 parameters All H-atom parameters refined $\Delta \rho_{\text{max}} = 0.51 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.45 \text{ e} \text{ Å}^{-3}$

H atoms were included in the riding-model approximation, with C-H = 0.93-0.96 Å and $U_{iso}(H) = 1.18$ or $1.20U_{eq}(C)$. Owing to the large number of weak high-angle reflections, the ratio of observed to unique reflections is low (39%), and this is a structure of low precision.

Data collection: *MSC/AFC Diffractometer Control Software* (Molecular Structure Corporation, 1994); cell refinement: *MSC/AFC Diffractometer Control Software*; data reduction: *CrystalStructure* (Rigaku/MSC, 2005); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *CrystalStructure*.

Figure 1

The molecular structure of (I), showing the atom-labelling scheme and 50% probability displacement ellipsoids.

The Dartmouth authors acknowledge the Donors of the Petroleum Research Fund (PRF), administered by the American Chemical Society, and Wyeth–Ayerst for support of this study.

References

Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Badenock, J. C., Fraser, H. L., Gribble, G. W. & Jasinski, J. P. (2007). Acta. Cryst. E63, 02474–02475.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Molecular Structure Corporation (1994). MSC/AFC Diffractometer Control Software, MSC, The Woodlands, Texas, USA.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Rigaku/MSC (2005). CrystalStructure. Version 3.5.1. Rigaku/MSC, The Woodlands, Texas, USA.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.